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INTRODUCTION 
JN18

There is no optical region more amenable to theoretical treatment
of nonspherical and compound particles than the Rayleigh region. Here
it is possible to calculate with. relative ease, the extinction due to
any particle which can brepresented by an ellipsoid(1) or a con-
focally coated ellipsoid2 ). This is not very restrictive because
nearly all convex particles can be accurately described by an ellip-
soid envelope, with the exception of polyhedra. Coated spheres, need-
les and discs are accurately represented. Recently lattice dynamical
and dielectric continuum calcul• i were made predicting extinction
by Rayleigh cubes and polyhedra ). It is even possible to model
accurately the extinction caused by a collection or irregular shapes,
the most common form for solid aerosols. From the standpoint of pro-
ducing strong extinction per unit mass, the Rayleigh region is the most
fruitful for even a moderately absorbing particle. Here extinction as
a function of size attains a high plateau which remains independent of
size so long as we stay within the region. Here we do not have to
depend, as is often the case elsewhere, on narrow extinction resonances
which all but disappear when particle size, shape, composition or
orientation change only slightly. The Rayleigh region holds the most
promise for yielding particles engineered to produce strong broadS~electromagnetic extinntion, and therefore it should be explored as
extensively as possible.

DISCUSSION

' J •The Rayleigh region is constrained by definition to be located

D T IC for p.b... .I';O nal"on is

OfT 1 6 i980 Z_/ Vlnlitilid.

S80 10 16 *)53
LA~



M3
EMBURY

where particle size is small with respect to wavelength both inside
and outside the particle. Here there is a close connection linking
the static polarization of a particle and its extinction per unit mass.
Before describing this connection first we will take a closer look at
the extinction per unit mass which will be referred to simply as the
extinction. Extinction, 2, determines the fraction of incident
radiation, T, which passes a distance, L, through an aerosol cloud
having concentration, C, in accordance with Beers Law.

T - e
A convenient self-consistent set of units puts extinction in square
meters per gram of aerosol, concentration in grams of aerosol per
cubic meter of air, and pathlength in meters. The extinction co-
efficient depends on the geometric cross section, G, optical extinction
efficiency factor, Q, and particle weight, W, in the following way.

L ~W 6 m

The inner brackets represent an average over solid angle to take into
account random orientations experienced by particles in the cloud
while the outer brackets represent an average over particle mass (size)
distribution in the cloud. This double integral simplifies to theI following single integral expression because <GQ/W> is independent of
particle size for an absorbing particle in the Rayl g igh region and of
course particle weight is independent of orientation.

W!

The fundamental extinction theorem relates the extinction cross section,
GQ, to the real part of the scatter amplitude in the forward direction, 4
RoeI(O)|, for radiation of wavelength, X.

2

GQ - Is S(o)

The Rayleigh theory relates the static complex polarizability, a, of an
absorbing particle to its forward scatter amplitude.

(o) - i •_a2Tr o

Substituting this value into the fundamental extinction theorem we
find for a single particle at one orientation,

2 4

GQ-8 Tr Re I(1a) I
The extinction cross section resulting from a collection of randomly
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oriented ellipsoidal particles aan be expressed as a function of a
complex polarizability which is just one third the sum of the polari-
zabilities, caj, along the major ellipsoidal axes.

S- h +ca - .)1/3
1 2 31

The major axis polarizabilities of an ellipsoidal particle are directly
proportional to particle volume, V, and depend on complex refractive
index, n, and depolarization factors, Lj, along the major ellipsoidal
axes a, b, and c. 2

V (n -1)
0 LI (n -1) + 1

where n w N + iK- abc dsL 1 2 (S+a4)3/z (s+b?) A/2 (s+CZ) I/1

with appropriate cyclical changes for L2 and L3. The three depolari-
zation factor. have the properties that each is nonnegative and their

The depolarization factors of spheroids depend only on the aspect
or axial ratio of the aKis of symmetry with respect to either one of
the other two equal major axes.For a prolate spheroid with axial ratio,
A, defined always to be greater than one;

1-e 2  1 l+e
L - (3 -1 4 X 1 -8)

1 2 2 -
e

2 2L2 =- Li L 3 L2 e 2 1-I/A
221 1 +__2 3i 21. a c t n fFor an oblate spheroid with aspect ratio, A, also defined to be greater

than one; f2

L 20 1- L L 3 . L2 f2 A 2

We may now write the extinction for a cloud of randomly oriented Ray-leigh ellipsoidal or spheroidal particles.

-X • 1 j*l -]jL (NZ=KZ) + (I 'Lj)[2  + •2NKL j)
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When the wavelength and density, P, are moved over to the left hand
side of the equation, shape dependence is more clearly evident on
the right hand side. In this way, wavelength and density, which are
altogether unrelated to shape, no longer appear as independent variables
and extinction values will not be tied to a single wavelength and
density.

- 167 3 NK2

3 ]-1 j- Lj (NZ-Kz) + (+L i) 7 )i

It is this quantity)(p that we choose to plot on the contour maps.
This frees us to select any wavelength, density combination and inter-
pret extinction isopleths accordindly. One self-consistent set of
units convenient to use in the infrared holds the extinction in square
meters per gram, puts density in grams per cubic centimeter, and wave-

length in micrometers. In this system of units, extinction density
wavelength contour maps may be said to represent, for example, extinc-
tion at one micrometer and unit density or at half a micrometer and a
density of two.

When the shape and dielectric properties of the particle combine
to reduce the value of the denominator in the previous equation, there
is an increase in extinction or equivalently a resonance 6). The
shape dependence of this resonance enters through the depolarization
factor. A sphere has depolarization factors equal to 1/3 for fields
applied along any orthogonal set of three radial axes. A prolate
spheroid approximating a thin needle has Lj -10 for fields applied
parallel to its length and L * 1/2 for fields in the plane of symmetry.
An oblate spheroid approximming a thin disk has Lj+l for fields
applied perpendicular to the plane of symmetry and Lj-+O for fields
in the symmetry plane.

A resonance occurs when the following conditions are satisfied:

Lj (N2 
- K2) + (1-Lj) - 0 2NKLj = 0

Remembering that all depolarization factors are nonnegative, we find
that for a given shape and depolarization factor the resonant values
for the optical constants which satisfy both conditions are

N a 0 K - (1/1, - 1)1/2

A close look at extinction in the limit n-oO and K equal to the above
value reveals that this in indeed an extinction pole. All three
depolarization factors for a sphere are equal to 1/3 and its resonance
therefore occurs at NaO and K- 1 .

4
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The special case where Lj-O warrents some discussion. This can
occur, as mentioned before, for salected orientations of needles and
disks with respect to the electric field vector. Taking this limit
in the previous equation relating extinction to complex refractive
index and depolarization factor, the terms in the summation corres-
ponding to depolarization approaching zero become simply

2
S• =h . + terms withL 0

These terms tend to dominate over terms which correspond to depolari-

zation which is nonzero over most of the complex refractive index
plane.

Figure 1 shows extinction density wavelength contours for a sphere
over a complex refractive index range typical of metals at visible
wavelengths and semiconductors at visible and infrared wavelengths.
Future references to extinction density wavelength contours will be
made simply to extinction for brevity. There is one resonance or
region of strong extinction centered at N-0 and K-j(2. This has been
identified as the first electrostatic surface polariton mode. The
region where the imaginary component of the refractive index is greater
than the real component is the restrahl region. There must always be
absorption here in order to satisfy the Kramers-Kronig relationships.
Any point lying on the K axis violates this requirement. Therefore
the K axis may only be approached, and extinction will always remain
bounded. The closest approach to this resonance will be made by a
material with maximal oscillator strength in a single oscillator
within sum rule limits and with minimal oscillator damping( 7 ).

In figure 2 the single resonance of a sphere has split into two
resonances for an oblate spheroid at an aspect ratio of ten. One pole
moves down the K axis toward the origin without noticeable changes in
the extent of its contour values while the second resonance climbs
steadily up the K axis, spreading its influence in the form of high
extinction over more and more of the complex index plane while aspect
ratio growv. A similar situation applies to prolate spheroids except
that the resonance moving down the K axis converges on the value one.

A metal is the aerosol material best suited to take advantage of
high extinctý9 produced by the resonance moving up the K axis. A
simple model for the optical constants of a metal, the Drude theory
model, puts the real parts of the refractive index equal to the imag-
inary index at wavelengths greater than ten microns. Extinction pro-
duced by metal prolate spheroids obeying the Drude theory appears in
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SFigure 1. Extinction tsopleths for Figure 2 Extinction isoplethe fnr
Sa Rayleigh sphere as a function of a Rayleigh oblate spheroid with an

Sthe complex refractiva index. aspect ratio of ten as a function

• of complex refractive index.
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Figure 3 Extinction isopleths for Figure 4 Extinction difference

a metal (N=X) Rayleigh prolate isopleths between metal (N-K).apheroid as a function of the bas R spheroids, prolate minus oblate

ten coe of the aspect ratio and the compared at equal aspect ratio
imaginary part of the complex re- anid complex refractive index.

fractive index. Negative isoplethe are deleted.
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figure 3 as a function of the base ten logarithom of the aspect ratio
and optical constants. This range of optical constanLS it typical of
metals in the infrared. Metal oblate spheroids generate a semilar
appearing set of contours. In figure 4 extinction produced by a
metal oblate spheroid Is subtracted from that produted b-, - prelate
spheroid having the same aspect ratio and optica] L,,itante. Negative
contour values are not plotted. In figure 5 prolate priaroid extinc-
tion is subtracted from oblate, so the region where an oblate spheroid
is superior to a prolate spheroid appears in the arna which is con-
toured out to an aspect ratio of ten thousand. Increasing metallic
refractive index and increasing aspect ratio work to produce high
extinction as can be seen in figure 3. When comparing which shape
causes higher extinction at a given complex index we see from
figure 4 and 5 that the prolate shape is superior for aspect ratios
less than some value while the oblate is superior for aspect ratios
greater then that value. In comparisons at a fixed aspect ratio, we
see that the oblate spheroid in superior below certain complex indices
and for higher complex indices a prolate spheroid is better.

The original ellipsoidal theory of Rayleigh has been extended in
recent years to include confocally coated ellipsoidal particles. The
major axis polarizabilitios,a , of a confocally coated ellipsoid
are directly proportional to overall ellipsoid volume, V, and depend
on inner (core) complex refractive index, ni, outer (shell) complex
refractive index, no, core volume fraction, Vj/V, inner depolarization
factor, Li, and outer depolarization factor, Lo.

V (n.- (2-1) {Lt~n,2-n.2) + n621+ YT( 1 2ni -n CL J (1-n 0 2)n J
J (nj2-noz) Li+ n~J+on2-1 + V L 0 (l-L0 ) (n12- 'T

Where the depolarization factors and complex indices are defined as
before for solid ellipsoids and spheroids. The confocal constraint
requires that the difference between the square of the outer axes and
the square of the inner colinear axes remain constant, resulting in
a thinner coating on larger axes. The value for this constant is
determined by the core ellipsoid volume fracti,ii. It is important to
recognize that a confocal constraint removes a degree of freedom from
simultaneous specification of inner depolarization factor, outer
depolarization factor and core volume fraction. Once any two of these
variables are specified, the third is automatically determined by the
constraint.

If the coated ellipsoid is a coated prolate spheroid, both the
inner and outer spheroids will be prolate with two foci points in
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common, and if it is a coated oblate spheroid then both will be ob-
late with a foci ring of points in common. Both inner and outer
depolarization factors depend upon aspect ratios as they did for solid
spheroids. However, due to a constraint a choice must be made as to
which two of the variables, inner aspect ratio, outer aspect ratio or
core volume fraction will be specified. Inner aspect ratio is always
greater than or equal to outer aspect ratio. The ratio of inner aspect
ratio over outer aspect ratio becomes larger as the core volume frac-
tion becomes smaller.

Altogether seven variables are used to characterize a confocally
coated spheroid. These variables are inner and outer complex re-
fractive indices, core volume fraction, inner ampect ratlo and outer
aspect ratio. As a result of the confocal constraint only two of the
last three variables are independent leaving six independent variables
governing extinction. Projecting contours onto a two dimensional
plane was an effective technique to locate strong eattinction pro-
duced by a solid spheroid where there were only three governing in-
dependent variables but not when there are six variables. The
appropriate procedure for seeking out extinction maxima in six dimen-
sions is to employ a function extrema search algorithm. Such a search
is being undertaken and it is too early to describe the results, how-
ever it is valuable to portray in two dimensions what happens to the
strong extinction observed earlier due to high aspect ratio solid
metal spheroids when a dielectric confocai coating is applied over the
outside.

Calculations have been made for metal core dielectric coated
spheroids and it was found that dielectric coatings reduce extinction
at all aspect ratios not close to one for both oblate and prolate
spheroids. On the other hand it has been discovered that applying a
metal coating over a dielectric core can significantlv increase
extinction for both prolate and oblate spheroids. Figures 6 and 7 map
the extinction difference between coated and uncoated oblate spher6ids.
Extinction due to solid oblate spheroids with real index 20 and imagi-
nary Index 20 is subtracted fcom the extinction due to coated oblate
spheroids with dielectric core real index 1.5 imaginary index U.U.
and metal coating complex refractive index equal to that of the solid
spheroid. In figure 6, the solid spheroid aspect ratio is set equal
to the inner aspect ratio while in figure 7 it is equal to outer aspect
ratio. These contour maps are similar to those of a prolate spheroid
except that the contour marking the boundary where extinction of
both coated and uncoated become equal occurs at an aspect ratio
nearly an order of magnitude smaller. A s,,bstantial increase In
extinctionigsevident in figures 6 and 7 Ls a result of the dielectric
core up to aspect ratios of nearly one thousand for core volume frac-
tiono between 0.1 and 0.9. At larger aspect ratios the solid spheroid
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is superior, however this cutoff depends on the optical constants of
the metal.

In figure 8, we can see what happens to this coated spheroid at an
outer aspect ratio of one hundred and core volume fraction of 0.5
when we adjust the core refractive index to determined what improve-
ments are possible over the dielectric core just discussed. The orig-
inal dielectric core with real index 1.5 and imaginary index 0.01 is
in an area of relatively strong extinction but figure 8 shows that by
increasing the core imaginary index above 0.01 extinction will 6et
larger. The optimal core would have a small real index and an imag-
inary index between 5 and 30; values to be expected in a metal a

frequencies just below the plasma frequency at visible wavelengths.

As mentioned earlier the Rayleigh ellipsoidal theory is not a
good approximation for particles that hkie edges and vertices such as
polyhedra. Fortunately dielectric continuum and lattice dynamical
calculations predict the absorption properties of cubes and other
polyhedra small compared to wavelength. The results of such calcul-
ations for a cube appear in figure 9. Once again resonances emerge
along the K axis but now there are six resonances located between
imaginary indices of one half and two with the strongest resonance
appearing furthest up the axis. Extinction far removed from these
ree'nances or outside the restrahl region is almost indistinguishable
from that of a small sphere.
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Figure 9. Extinction isopleths foe a cube as a function of complexrefractive 
index.
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CO CLUSIONS

SWhen particle size becomes small compared to wavelength, extinc-
tion not only depends on geometric cross sections but also becomes
a very strong function of complex refractive index. Regions of
resonant extinction were located in the complex refractive index

V plane for a variety of spheroidal and confocally coated spheroidal
particles using the Rayleigh ellipsoidal approximation. The strongest
most extensive is found for high aepect ratio metal prolate and ob-

late spheroids approximating thin needles and disks. Even stronger
extinction was found to occur when metal needles and disks have a
dielectric core. On the other hand a dielectric coating reduces ex-

P tinction. The unbounded peaks of extinction resonances, located
where the real part of the complex refractive index becomes zero,

were proven to be inaccessible to any material obeying the Kramers-
Kroenig relation which requires absorption at restrahl. Finally the

six resonances of a cubic particle were explored in the complex re-
f rctive index plane. Because a cube is an example of where the
Rayleigh ellipsoidal approximation fails most severely, the extinc-
tion was predicted using a result taken from the dielectric con-
tinuum and th6 lattice dynamical theories.'x
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